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ABSTRACT 

A practically important regularization of the Navier-Stokes equations have been ana- 
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been found. Regularity properties of these manifolds are analyzed. 

'This research was supported in part by the Office of Naval Research under the URI Research Contract 
No. N00014-86-K-0679. Additional support was provided by National Aeronautics and Space Adminitration 
under NASA Contract No. NAS1-18605 and the Air Force Office of Scientific Research under AFOSR Grant 
No. 89-0079 while the first author was in residence at  the Institute for Computer Application in Science and 
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 

i 



Contents 

1 Introduction 1 

2 Governing Equations and F’unc tional Framework 2 

t 

3 Local Invariant Manifolds 7 

3.1 The Cauchy Problem and Associated Semigroup . .  -. . . . . . . . . . . . .  8 

3.2 The Characterization of the Monodromy Operator . . . . . . . . . . . . . .  13 

3.3 The Nonlinear Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

3.4 Local Invariant Manifold Theorem . . . . . . . . . . . . . . . . . . . . . . .  22 

4 Global Invariant Varieties (Inertial Varieties) 25 

4.1 Overall Bounds for the Solutions . . . . . . . . . . . . . . . . . . . . . . . .  25 

4.2 Formulation of Inertial Varieties . . . . . . . . . . . . . . . . . . . . . . . .  30 

4.3 Inertial Manifold Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

4.4 Spectral Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

4.5 Regularity of Inertial Varieties . . . . . . . . . . . . . . . . . . . . . . . . .  47 

A Time Analyticity of Strong Solution 58 

PRECEDiKG PAGE BLANK NOT FILMED 

iii 



Chapter I 

I 

i 

! 

I 

Introduction 

In [15] we have presented an analysis of a practically important form of the regularized 

Navier-Stokes equations. We also presented a theorem for the convergence of the solution of 

such system to the solution of the conventional Navier-Stokes system as the regularization 

parameter approaches zero. 

In this paper we will present an analysis of the structure of the attractors associated 

with the regularized system. We will present in particular theorems for stable and un- 

stable manifolds associated with each periodic solution and establish their analyticity and 

invariance properties. The main machinery needed for these invariant manifold theorems 

are the analyticity properties of the nonlinear semigroup and its FrCchet derivative and 

spectral theorems for the monodromy operator. These results are established in section 3. 

In the section 4 of the paper we establish the existence of: a global attractor for the 

system and prove its compactness. We also note certain bounds on the attractor which are 

uniform on the size of the regularization parameter. We then prove the existence of global 

(inertial) invariant varieties containing this attractor. Such a global invariant manifold 

theory is proposed in [6] for certain class of semilinear evolution equations. Motivation 

for such study of course comes from the famous paper of E. Hopf [8 ] .  We then study the 

regularity of the inertial manifolds and obtain sufficient condition for them to be C1. 



Chapter 2 

Governing Equations and Functional 
Framework 

In this chapter we will briefly outline the mathematical framework used in this paper. 

For detail proofs of the relevant theorems see [15]. We regularize the conventional Navier- 

Stokes equations by adding a fourth order operator (Laplacian square) with an artificial 

dissipation parameter E .  In addition to the prescribed initial field ug and Dirichlet bound- 

ary condition, we also prescribe the Laplacian of the velocity field at  the boundary to be 

zero. Let n c R", n 5 6 be a bounded open set of class C', t 2 4. The problem is to find 

(u,  p )  : fl x ( 0 , ~ )  4 R" x R such that 

(2.1) 

v . u = o ,  in R x (O,oo) , (2.2) 

a U  - + ~ A ~ u - ~ A u + ( u . V ) u f V p =  f ,  in R x ( o , ~ ) ,  
at 

Here Y > 0 is the coefficient of the kinematic viscosity of the fluid and f is a prescribed 

vectorfield. 

Let us introduce the following function spaces: 

j ( n )  = { u  : R 3 R"; u E C*(R), ulan = 0,  Aulan = 0,  div u = 0 } ,  

H = { u  : n + R"; u E L2(R), div u = 0 u - nlan = O } ,  

V = { u  : R -+ R"; u E H2(R), div u = 0, ulan = 0). 

2 
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Here we denote by Hm(R), the Hilbertian Sobolev space of (square integrable) vector- 

fields whose distributional derivatives up to order m are square integrable. These spaces 

are endowed with the inner product 

and the norm 

IIUIIH"(n) = ( c llDaul12,2(n))1'2 * 
l W m  

It can be shown [15] that the spaces H and V are respectively the completion of i ( R )  in 

the norm L2(R) and H2(R). 

The space H is endowed with the inner product (u, u ) p  and norm lul = (u, u)z/a". One 

can easily verify that the norm induced by H2(h2) and the norm IlAuIIp(n) are equivalent 

in V .  We then denote llull = IlAullLa(n) = (u,u):/~ as the norm in V derived from the 

inner product 
" a2u a2u 

(u,v)v = E(- axiaxi9 -1 axiaxi - 
i= 1 

Let us now characterize a linear self adjoint positive operator A (which we call the 

dissipation operator) using the following fundamental linear problem : Find (u, p) : R + 

R" x R such that 
A2u+Vp= f ,  in h2, 

v - u = o ,  in f l  , (2.5) I ulan = 0 ,  Aulan = 0 .  

This equation characterizes a linear operator relating u to f and is defined on i(0). Let 

us denote the Friedrich's extension of this operator as A.  This operator can be defined as 

follows: We define a positive definite, V-elliptic symmetric bilinear form a ( - ,  a )  : V x V --+ R 

" a2u a2v 
a(u,u) = -1 ax;ax; * 

i= 1 

Then by Lax-Milgram lemma we obtain an isometry A E L(V; V') as 
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and A u  = f E V’ = L(V;R) .  We then define D(A)  as follows: for f E H c V’, 3 u E V 

such that 

a(u, u )  = ( f ,  U ) H ,  v u  E v. 
We then denote u E D(A) .  We thus have A E L ( D ( A ) ; H )  n L(V;V’). The operator A 

defined above is closed with D ( A )  dense in V c H .  From this it is easy to conclude that 

A is self adjoint. Since the continuous form a( - ,  -) is positive definite we deduce from a 

theorem of Lions [13] that D(A’/2) = V and 

a ( ~ ,  U )  = (A’ /~u ,A’ /~u)  V U ,  u E v . 

This implies, 

l l ~ 1 1 ~  = U ( U , U )  = [A v u  E v . 
We have in fact A = AlA2 : u t f so that A is an isomorphism from D(A)  onto H 

with Al the Stokes operator and A2 the Friedrich’s extension of the Laplacian operator[l5]. 

This gives 

u E D ( A )  = {U E H4(R); ulan = 0, Aulan = 0, divu = 0). 

We also have the following estimate for solution (u, p )  

In consequence of the relationship Au = f ,  3p1, p2 E R+ such that 

By Rellich’s Lemma [l] A-’ as a mapping in V’ (or H )  is compact. Hence the spectrum 

of operator A consists of real eigenvalues pj of finite multiplicities and can be ordered as 

with accumulation possible only at  infinity. The self adjoint operator A possesses an 

orthonormal set of eigenfunctions {q5j}zl complete in V‘ (or H ) .  

4 



If we identify H with its dual H' using the Riesz representation theorem then we get 

the following continuous dense and compact embedding structure : 

D(A)  c V c H H' c V' c D(A)' .  

Let us now define the trilinear form b ( . , - , . )  associated with the inertia terms: 

It can be easily shown by applying the divergence theorem and noting that u and w have 

zero trace, 

b(u,u,w) = -b (u ,w ,u) ,  v u , u , w  E v 

and 

b(u ,u ,u )=O,  V U , U E V .  

By the application of Hijlder inequality and Sobolev embedding theorem we can show 

that b ( - , - , - )  is trilinear continuous on Hml(n)  x Hmz"(n) x Hm3(R), m; 2 0: 

n n 
m l + m 2 + m ~ >  - if mi# i = 1 , 2 , 3 a n d  

2 
n n 

ml + m2 + m3 > - if mi = - for some i. 
2 2 (2.8) 

In particular, for n 5 6, b is a trilinear continuous form on V x V x V. When $2 is bounded, 

the following interpolation inequality holds [ 141: 

From the above we will derive in particular, 

5 



where cl, c2 are positive constants. By virtue of (2.8), we know that the above inequalities 

are valid for space dimension n 5 6. The estimate (2.8) enables us to define (using Riesz 

representation theorem) a bilinear continuous operator B from Hml (n) x Hm2+l(n) into 

(Hm3((R))’ .  In particular, for u,u ,w E V ,  B(u,u)  E V’  will be defined by 

< B(u ,u) ,  w >v’xv= b(u,u, tu) , v w E v . (2.12) 

Let us note that a linear operator A1 from V onto H can be defined as 

and Alu = -PHAu, Vu E V .  In fact AI is the Stokes operator associated with the 

conventional Navier-Stokes equations. PH is the orthogonal projector in L2 ($2) onto H .  

6 



Chapter 3 

Local Invariant Manifolds 

In this chapter we will establish the hyperbolicity of periodic solutions. Existence 

theorem for the periodic solutions is provided in [15]. Here we will study the orbits nearby 

each periodic orbit. We will prove in particular the existence, uniqueness and analyticity of 

stable and unstable manifolds. Such results for conventional Navier-Stokes equations have 

been proven in [20]. Let us consider a perturbation about a general time dependent smooth 

and bounded field ( U ( z , t ) ,  P ( z , t ) ) .  We assume that this basic field satisfies the governing 

equations and the boundary conditions. Let us introduce t~ = U + u and p = P + q in 

(2.1)-(2.4). Then the perturbation solution (u,  q)  satisfies. 

a V  - + E A ~ V  - Y A U +  (Us V)V + ( v -  V ) U +  ( v -  V)V + Vq= 0, 
at  

v . u = o ,  in n x ( O , o o ) ,  

Let us now rewrite this system as an equation of evolution in the Hilbert space V. This 

can be achieved by applying the projection operator PH on the system (3.1). Noting that 

PH(Vq) = 0, we get the evolution equation for u: 

u(0)  = uo E v. 
Here A E L(V;V') is the dissipation operator defined earlier and AI E L ( V ; H )  is the 

7 



Stokes operator. We can use the Riesz representation theorem to characterize LU(t) and 

B ( - , . )  as 

< L,y(t)u,w >vtxv= b(U(t) ,u,w) + b(v,U(t) ,w) ,  V W  E V. 

and 

< B ( u , u ) , w  >ytxv= b( t t , t t ,W) ,  V W  E V. 

3.1 The Cauchy Problem and Associated Semigroup 

In this section we will derive few useful properties of the semigroup generated by the 

dissipation operator -EA.  These estimates will be used to resolve the nonlinear semigroup 

associated with the regularized Navier-Stokes equations as well as to establish certain 

results concerning the invariant manifolds. 

Let us consider the Cauchy problem: 

Problem 1 Find u E C([O, 00);  V) n C'(0,oo; V ' )  such that 

[ g + c A o = O ,  t > O ,  

I u(0)  = oo E v. 
Before studying the semigroup S ( t )  : 00 + o( t )  associated to the above problem, we will 

document certain relevant properties of the resolvent of --EA. 

Lemma 3.1 Let B1 and B2 be two Hilbert spaces defined below such that the embedding 

B1 c B2 is continuous and dense. Then the resolvent of the dissipation operator --EA 

satisfies : 

for XR > - - ~ p 1 ,  (3.4) 

I where = {A; larg(X + ea) I 5 ?r/2 + 6,0 < 6 < ~ / 2 }  and 0 < a < pl, p1 is the smallest 

~ 

eigenvalue of the operator A. Here we will take the spaces B1 and B2 as either 
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(a) B1 = V, 

or 

B2 = V’ 

(b )  B1= D ( A ) ,  B2 = H .  

Proof: (i) let us write u in B1 as an expansion of the eigenfunctions of A: 

Since q5k are orthonormal, 

Here we used the fact that 

Thus, the resolvent of --EA in B2 satisfies 

(ii) Similarly, it follows from 

that for XR > 
1 

R -k Epl 
I I N X ;  --EA) I I L ( B ~ ; B ~ )  5 

(iii) Combining (i) and (ii) we get for 0 < a < p1 

From this we show by analytic continuation that 
L 
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Theorem 3.1 -EA generates a Co semigroup S( t )  such that: 

where 0 < a < p1 and c depends on -E. Moreover S(t) can  be extended as a holomorphic 

semigroup in the  sector A6= { z  : latgzl < 6,6 = tan-' -, R e z  > 0). 1 
ec 

Proof: (i) The spectrum of the operator --EA lies on the negative real axis, thus the 

resolvent set p(-eA) will contain the positive real axis and from the estimate on the 

resolvent in Lemma 3.1, we have 

for XR > --Ea, a < p1. 
1 

XR + ca I I R ( X ;  --EA)IlL(B2;B2) 5 

Hence by the Hille-Yosida theorem [16], -cA generates a strongly continuous semigroup 

S ( t )  in Bz and 

I l  s(t) II L(B2;B2) < - e-'"', t > o  

(ii) Using the estimate (iii) of Lemma 3.1, We can represent S( t )  as an integral 

1 
S( t )  = -1 eX'R(X; -€A) dX 

27ra r 

where I' is a smooth curve in C6 consisting of two rays xeie and ze-" , 0 < x < 00 and 

7r/2 < 0 < T. I' is oriented so that XI increasing along I'. Differentiating the integral with 

respect to t ,  we get 
* -  I 

S f ( t )  = -1 XeXtR(X; --EA) dX . 
27ri r 

From (3.5), for X # -€a and t > 0 

Consequently, 

10 
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n n 

Now due to the differentiability of S ( t )  for t > 0 and S(")(t) = ( - -€AS(-))" = (S'(-))", 

we have 

To extend the semigroup S(z)  in some sector, we consider power series for S ( z )  around t 

(2  - t ) " .  
OQ S(")(t) 

S(Z) = S ( t )  + c - 
n! n=l 

This series will converge in L(Bz; Bz) for 

\ z - t l < k ( k ) ,  for k < l ,  t > O .  

Hence S(t )  can be extended to a holornorphic semigroup S(z)  in the sector As = { z  : 

Iargzl < 6,6 = tan-l - ,Re2  > 0). 1 
ce 

Using the estimate (iii) of Lemma 3.1, we can define the positive as well as negative 

powers of A .  Since A-l is compact, the spectral resolution of the self adjoint operator A 

can be used to define its fractional powers in a simple way. We thus write, V a  2 0 

- 
1 

OD 

A"u = E P;(% 4 k ) 4 k ,  vu E W"), 
k= 1 

with D(A") = {u E H such that Cgl  ppI(u, 4,)12 < 00). 

Lemma 3.2 For a > 0 and t > 0, the bounded operatq A*S(t)  satisfy the estimates: 
i 

a! 
where M = (-)*. 

Proof: Note that aliy element u in B1 may be represented as 

€e 

I 
m 
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Hence we may write 
00 

A"S( t )u  = pte-cpkt(u, 4 k ) ~ ~ ~ $ k  . 
k= 1 

Thus, 

IIAaS(t)l lL(Bz;B2) 5 maX(pte-Cpkt) k> 1 - 
a 

Note that the right hand side of inequality admits maximum when pk = -. This 
Et 

proves the lemma since p1 > 0 is the smallest eigenvalue. 

Let PN be an orthogonal projector in V' onto the finite dimensional subspace of 

Note that PN and Q N  commute with A". span{q51,---,q5N} and Q N  = I - PN. The 

following lemma is useful in a later section and can be proved in a similar way to the 

previous lemma. 

Lemma 3.3 For a > 0 and t < 0, the bounded operator A"QNS(- t )  satisfy the estimates: 

a 
where M = (-)". 

ce 

Since semigroup S ( t )  is holomorphic we have for t2 2 tl > 0 

This gives 

Ils(t2) - S(tl)llL(H;V) I €1; lIAS(t)IlL(a;v)dt = €1; IIA3'2S(t)llC(H;H)dt. 

By applying Lemma 3.2 with a = 3/2 and B2 = H ,  we obtain 

12 



3.2 The Characterization of the Monodromy Opera- 
tor 

We will now characterize the evolution operator Z(-, -) associated with the Cauchy's 

problem obtained by linearizing the regularized Navier-Stokes equations about a smooth 

time dependent basic field. Let us consider the 

Problem 2 Find u E C([O, 00); V) n C1((O,oo); V')  such that 

t > O ,  du 
dt 
- + EAU + v A l u  + LU(t)u = 0,  (3.9) 

u(0) = uo E v . 

We will show that the Problem 2 is equivalent to the following integral representation 

for u( t ) :  

Problem 3 Find u E C([O, 00);  V )  such that, 
I 
I 

u ( t )  = S(t)uo - S( t  - T ) [ v A ~  + L u ( T ) ] u ( T ) ~ T ,  (3.10) 

u(0)  = UrJ E v . 

Theorem 3.2 Let the basic field satisfies U E C([O, 00); H1(R)) and be bounded. Then 

the Problem S resolves the Problem 2. 

Note that the Stokes operator A l  is a linear continuous operator from V onto H .  Further- 

more, the linear operator LU(t) is characterized by 

By virtue of (2.8) we obtain the following lemma. 

Lemma 3.4 I f U  E H1(n), Lu E L ( V ; H ) .  

I 
1 
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Proof: Recalling the estimate for b(.,-,.) in (2.8), we take ml = 2 and m2 = m3 = 0 to 

get 

Ib(u, U ,  w )  I I c1 IlullHa(n) IlUllHl(n) IIWIIL2(n) 9 v'ut E H - 
A similar estimate holds for b(U, u, w ) .  Thus 

Here we note that the norm induced by H 2 ( n )  is equivalent to the norm in V .  Setting 

w = Luu E H we get, 

IlLu~llL~(n) I (c1 + c2) IIUllHl(n) Iltfllv. 

In order to prove Theorem 3.2, we need first to establish certain properties of linear 

operator K defined as 

t 
[Kv] ( t )  = -1 0 S ( t  - r )[vAl  + L u ( r ) ] u ( ~ ) d r .  

Lemma 3.5 Let K be the linear operator defined above. Then for suficiently small Tl, 

K is a contraction in C([O,Tl ) ;V) .  Moreover, K can be extended as a contraction in the 

Banach space B defined as: B = {t  + u( t ) ;u ( t )  continuous in  V for  t E]O,T~] and t1I2u(t) 

bounded in V 1, with norm 

Lemma 3.6 For u E C([O, TI); V ) ,  the time derioatioe [Ku]'(.) E C((0, TI); V') .  Moreover, 

when u E B the map t + [ Ku]'(t) i s  continuous from IO, TI) into V ' .  

The proofs for the above two lemmas are similar to those fer the conventional Navier- 

Stokes equations [20]. Note that [Ku](t)  E C([O,Tl ) ;V)  and it has continuous right 

derivative [Ku]l,( t)  E C((0, TI); V') .  This implies [Ku]( t )  is strongly differentiable and 

[Ku]'(t)  = [Ku]l,( t)  for t E (0,Tl) (see Zaidman [23]). 

I 14 I 



Proof of The-orem 3.2: We have shown that the strong derivative [Ku]'(t)  exists and 

[Ku]'(t)  = -eA[Ku](t)  - [vAl + L ~ ( t ) ] u ( t ) .  This gives 

[ K u ] ' ( ~ )  + €A[Ku]( t )  + [ v A ~  + L u ( t ) ] ~ ( t )  = 0, 

with [Ku](O) = 0 which implies the representation (3.10) in Problem 3 satisfies the differ- 

ential equation (3.9) in Problem 2. Moreover, due to the properties of the linear semigroup 

S(t)  established in previous section we have, 

s ( t )u0  E c([o,oo);v) n C ~ ( ( O , O O ) ; V ' ) .  

From Lemma 3.5 and 3.6, we can conclude that 

l* s(t - T ) [ ~ A ~  + L ~ ( ~ ) I U ( + ~  E c(p, G I ;  v) n c1((o, G I ;  VI). 

Let us now characterize the evolution operator associated to the linear differential 

equation in Problem 2. From the definition of linear operator K ,  we can rewrite (3.10) in 

Problem 3 as 

[ ( I  - K ) v ) ] ( t )  = s ( t )vo .  

Then for small enough T,, the operator ( I  - K )  is invertable in C([O, T,) ; V )  and in B since 

K is a contraction in these spaces. We obtain a convergent series in C([O, TI); V) as 

M 

u ( *) = [ K "SI ( 9)  uO. (3.11) 

Hence, the solution of Problem 3 can be denoted by u(t)  = Z(t,O)uo. We call Z(t,O) the 

evolution operator. Note that the convergence of this series ensures the uniqueness of the 

solution to Problem 3 (and hence to the Problem 2.) Let us now study the evolution for 

t 2 T by prescribing the initial data a t  t = r in Problems 2 and 3. The evolution operator 

obtained(= a series) in this manner is denoted Z ( t , r )  with t - T 5 TI. Here T'1 is taken 

n= 0 

1 
I 
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small enough to ensure the convergence of the series. Let us consider for 0 5 7 5 7 5 t ,  

u ( t )  = Z ( t ,  T ) U ( T )  with U ( T )  = Z ( T , V ) U ~ .  That is 

Due to the uniqueness of the solution we have 

Iterating this kind of arguements we can extend the definition of Z(t2,  t1) to  t2 --tl E [0, 00). 

The next series of lemmas provide useful regularity and compactness properties of 

evolution operator Z(-,.). These lemmas can be proved using the same methods used in 

the context of conventional Navier-Stokes equations [20]. Note that here the initial data 

is prescribed in V for the evolution problem. This means we need to characterize Z( - ,  -) 

as an element in L(V;  V). Moreover, the bilinear operator characterizing the inertia term 

has the property B ( - ,  .) E L(V x V; H). Hence we need to extend Z(., -) as an element in 

L ( H ; V ) .  

Lemma 3.7 For 0 5 r < t the evolution operator Z ( t , r )  satisfies the following estimates: 

Here c3, c4 > 0 and u1,02 2 0. 

16 



Lemma 3.8 For 0 5 tl 5 t2 < 00 we have as t2 -+ t : ,Z( t , , t l )  4 I strongZy in L (V;V) .  

For t > r the map t -+ Z ( t ,  r )  is continuous in the uniform operator topology of L (V;  V )  n 

L ( H ;  V )  and for r < t the map r + Z ( t ,  r )  is continuous in the uniform operator topology 

of L ( V ; V )  n L ( H ; V ) .  

I 

Lemma 3.9 For 0 5 r < t the operator Z ( t ,  r )  E L ( V ;  V )  n L ( H ;  V )  is compact. 

Note that the evolution operator Z( t2 , t l )  : H -+ V is compact and hence the spectrum 

of this operator is discrete with finite multiplicity and accumulation possible only at  the 

origin. Moreover, they are the same in H and V .  

Let us now specialize our study to the case where the basic field U is T-periodic in 

time. 

Lemma 3.10 Let the basic field be T-periodic in time. Then 

(i) Z(nT,O) = Z(T,O)" , Vn 2 1, 

(ii) The spectrum of Z (T  + to,to) is independent of  to 2 0. 

We will call the operator Z(T,O) the Monodromy operator. 

3.3 The Nonlinear Semigroup 

I 

In this section we will characterize nonlinear semigroup associated with the nonlinear 

syatem (3.1). We will define in particular the time T-map which relate the initial data wo 

to the solution w a t  time T. In addition, we will prove that the dependence of w in the 

initial data is FrCchet analytic. This last result will be used in next section to establish 

the analyticity of the local invariant manifolds. Let us now consider the evolution form of 

the regularized Navier-Stokes system. 

17 



Problem 4 Find u E C([O, 00);v) n C1(O,oo;Vf)  such that 

du 
d t  
- + CAU + VAlU + LU(t)tt + B(u,u) = 0, t > 0 ,  

u(0)  = uo E v . 
(3.12) 

i Here the linear operator B ( - ,  .) is defined using the Riesz representation tlleorem as 

< B(u,u),w > y i X y =  b(tt,u,tu), VW E V . 

The evolution Problem 4 can be derived by simply applying the projection operator PH 

onto the system (3.1). 

Let us consider the following integral representation for the solution of (3.12): 

I Problem 5 Find u E C([O, 00); V )  such that 

(3.13) 

where Z(., -) is the evolution operator described in preceding section. 

Theorem 3.3 Problem 5 resolves Problem 4. 

Proof: First note that the representation (3.13) in Problem 5 formally satisfies the evo- 

lution form (3.12) in Problem 4. From the regularity properties of the evolution operator 

Z ( t ,  0) we have, 

~ ( t ,  o)u0 E ~ ( [ o ,  00); V )  n cl(o,00; vf)  

Hence if we set, 

Y ( t )  = - / t  Z ( t ,  rl)B(v(rl), v(rl))drl, (3.14) 

then we only need to show that Y ( - )  E C([O, 00);  V )  n C'(0,oo; V') .  Let us first show that 

Y ( t )  is bounded and continuous in V .  

0 
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Note first that B(. ,  .) E l ( V  x V; H). In fact from the estimate for b ( . ,  -, e) in (2.8) with 

ml = 2,m2 = 1,ms = 0 we get 

Hence by the Riesz representation theorem we can write 

By setting tu = B(u,u) E H, this gives 

Thus B(u,u) E C([O,oo);H) for u E C([O,oo);V). 

Let us now estimate (3.14) as, 

Now using the estimates for the evolution operator Z(t ,  7 )  obtained in the previous chapter 

we get, 
2 II y II C([O,T&V) I Y l  (T2) llull C([O,Ta);V) * 

Let us now consider, 

t 

Y ( t  + h) - Y ( t )  = - 1 [Z(t  + h, '7) - q t ,  rl)]B(u('7), u(rl))drl 
0 

Estimating this we get, 

Again using the results of the previous chapter we get 
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with y z ( t ,  h) + 0 as h + 0. We hence conclude that Y E C([O, 2'2);  V ) .  Now, 

Taking the limit h + 0 we get due to the continuity results of the evolution operator Z(- ,  .) 

obtained last chapter 

Here Yl ( . )  is the right derivative. 

For u E C([O, T2); V )  we have B(u, u)  E C([O,T2); H )  and Y E C([O, T-); V ) .  Since A is 

an isomorphism from V onto V' ,  we have AY E C([O, T2); V' )  and [A1 + Lv(t)]Y E 

c ( [ 0 , T 2 ) ; H )  due to the estimates on the trilinear form b ( - , - , - ) .  Hence we conclude that 

the right derivative exists and YI(- )  E C(0,  T2; V') .  From this as before we conclude that 

the strong derivative Y'(.)  E C(0, T2; V'). Thus 

y'(t) + €AY(t) + vA1Y(t) + Lv(t)Y(t)  + B ( u ( ~ ) , u ( ~ ) )  = 0, 

which implies that Y ( t )  is a solution of Problem 4 with Y (0) = 0. This proves the Theorem. 

The existence and uniqueness aspects of the solution can be established using the meth- 

ods used in [9]. Here one shows that for a fixed time interval there exists a neighborhood 

such that there is a unique solution for each initial data in this neighborhood. The time in- 

terval can be taken to infinity by choosing this neighborhood sufficiently small. (However, 

see remark.) 

We will now establish an important result regarding the dependence of the solution on 

the initial data. Let us rewrite Problem 5 in the form ?(v,vo) = 0. Here the map 

3(., .) : C(0, T2; V )  x v + C(0,Tz; V )  
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is defined by 

(3.15) 

Here the bilinear operator M(. ,  -) : C(0, T2; V)@2 - C(0, T2; V) satisfies 

M(0, w )  = M ( w ,  0) = 0, v E C(0, T2; V )  

and Z ( t ,  0) E L(V, V )  for fixed t. 

The following theorem is a consequence of the analytic version of the implicit function 

theorem [5]. Results of this type for the conventional Navier-Stokes system is given in 

Sritharan [20]. 

Theorem 3.4 For fized T* > 0 there ezists a neighborhood of the origin B26 C V such that 

for vo E B26, there ezists a unique solution u E C(O,T*;V) to the problem 5. Moreover, 

the dependence of u in  the initial data uo is Frkchet-analytic. 

0 

This means there exists a map 

W(t,O;.) : B26 c V _+ B16 c C(O,T*;V) 

such that u( t )  = W ( t ,  0; uo) and W ( t ,  0; .) is F-analytic in this neighborhood. That is v ( t )  

can be written as a power series in the initial data in the following way: 
I 

u( t )  = W ( t ,  0; uo) = Un(uo, - - , uo; t ) .  (3.16) 
n2 1 

The n-linear maps 

Un(. - .) : B&" + B16 continously . 

This series representation converges in the neighborhood defined above. One can verify 

easily that Xl(vo; t )  = Z ( t ,  O)uo. We finally note that due to the uniqueness theorem, 

W ( t ,  0; uo) = W ( t ,  t l ;  W ( t l ,  0; uo) ) ,  for 0 5 tl 5 t < 00, 
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and W(O,O;.) = I. 

If the basic flow field U ( t )  is T-periodic then 

and in general 

W(nT, 0; .) = W ( T ,  0; -)", for n 2 1 . (3.17) 

As noted earlier in the previous section, the FrechCt derivative of the solution map ( D W ) ( t ,  

0; .) = Z ( t ,  0 )  satisfies a similar relationship as in (3.17). 

Remark: The nonlinear semigroup characterized above is defind (when T' = 00) only in 

a neighborhood of the origin. However in [15] we have proved the global existence and 

uniqueness of strong solution in V using other methods. 

3.4 Local Invariant Manifold Theorem 

Let the spectrum of the monodromy operator Z(T, 0) E L(V;  V )  splits into two disjoint 

sets uu and us such that u(Z(T,O)) = uu U us and 

(3.18) 

Let PV and Ps be the spectral projectors defined by the Dunford's integrals, 

R(X; Z(T, 0))dX 

and Ps = - / R(X;Z(T,O))dX.  
27ri rs 

Here R(X; Z(T, 0)) is the resolvent operator and I'u, rs encircle uu, US respectively. Note 

that Ps + Pu = I ,  PSPU = PUPS and Ps,Pu commute with Z(T,O). 

Theorem 3.5 (The invariant cone theorem) Let the basic flow be T-periodic in time 

so that the solution map satisfies (3.17). 

(i) If the spectrum of the monodromy operator Z(T,O) lies inside the unit disc (spectral 

radius < 1) then the basic periodic solution is (locally) exponentially stable: there exists 
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p > 0 such that  Vu0 E Bp(0) c V ,  W(t ,O;uo)  + 0 exponentially in the norm o f  V .  

(ii) Let the spectrum of Z(T,O)  satisfy (3.18) with bU < 1, then  there exists a double cone 

K c V and a ball B b ( O )  c V such that Vuo E Bb(0) n K\{O}, there exists n E N f o r  which 

I(W(nT, 0; u0)IIv > 6 .  That  is  the basic solution is Lyapunov unstable. Here double cone is 

defined b y  

K = {u  E V such that llPsullv 5 'yllPuuIIy, 'y > 0). (3.19) 

Theorem 3.6 (The invariant manifold theorem) 

borhood B,(O) C V ,  there exists two unique, analytic 

respectively the graphs o f  the maps, $s : PsV --+ PuV 

dS and $u are analytic with, 

1. h ( 0 )  = 4 s ( o )  = 0; 

2. D$,(O) = D&(O) = 0 (tangency condition;) 

0 

Let b s ,  bU < 1. Then in a neigh- 

manifolds MS and MU which are 

and $u : PuV -+ PSV. The maps 

9. manifolds Ms and Mu are locally invariant under the solution m a p  W ( T ,  0; -) 

W(T,O; MU n B,(O)) c MU and W(T,O; MS n B,(O)) c Ms; 

4. stable manifold MS satisfies 

Ms n B,(O) = {u E B,(0) such that V n 2 0, W(nT,  0; v )  E %(0) 

and --+ 0 as n -, 00); 

5. Unstable manifold Mu satisfies, 

Mu rl B7(0) = {u  E B,(O) such that W(T,O; -)"u is defined V n  < 0 

and tends t o  zero as n + -00); 

6. if u 4 MS t hen  there exists 6 > 0 and p E N such that,  IlW(pT, 0;u)IIv > 6; 
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7. dist(Mu, W ( T ,  0; v ) )  < dist(MU, u )  for u E B,(O) (exponential attractive property 

of the unstable manifold;) 

8. dist(Ms,W(T,O;v)) > dist(Ms, u )  for u E B,(O) (repelling property of the stable 

manifold.) 

~ 

Proofs of Theorem 3.5 and 3.6 are similar to those for the conventional Navier-Stokes 
~ , system and can be found in detail in [ZO]. 
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Chapter 4 

Global Invariant Varieties (Inertial 
Varieties) 

Foias, Sell and Temam proposed in [6] the concept of inertial varieties for certain 

class of semilinear evolution equations. In this section we will study the existence of such 

global invariant varieties modelled on the invariant subspaces of A. These manifolds will 

be invariant to the action of the W ( t ,  0, -). In section 4.5 we will extend the general theory 

in [6] to analyze the regularity of the inertial manifolds. Let us first obtain certain overall 

bounds for the solution in various norms and show that the dynamics is characterized 

by a compact global attractor. The global manifolds to be constructed will contain this 

a t  tract or. 

4.1 Overall Bounds for the Solutions 

We can get a weak formulation from the system (2.1)-(2.4 by taking duality pairing 

with w E V, 

(4-1) 
a U  

at 
< -, w > +c(Au, Aut) +  VU, V w )  + b(u, U, W )  =< f, w > v w  E v 

We will first consider the energy estimate by setting w = u and using the fact that 

b(u, u, u) = 0, 
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~~~ ~ ~ 
~~ 

~ Using the Poincarh's Lemma 

Here we denote 

~ p 1 +  2 v ~ l  and p i  = - ' I f  to obtain 

as the smallest eigenvalue of Stokes operator Al. We then set a = 

~ 

€a 

I We note that in the case of lu(z, 0) I > po, the energy estimate in (4.3) show that lu(t) I is 
bounded by a monotone decreasing exponential funtion. On the other hand, if Iu(z, 0) I 
po, then Iu(z, t)l 

is a ball B,, in H centered a t  origin with radius ro > po such that 

po for V t  E R+.  Hence for any ball BR = ( u ( 0 )  E H ;  lu(0)I 5 R}, there 

The ball B,, is said to be exponentially absorbing and invariant [10,11,6] under the 

action of the map W(t,O;-).  
I 

Let us now proceed to get other estimates. Notice that from energy estimate if uo E BR 

and t 2 t o ( B R ) ,  by integrating (4.2) from t to t + 1, 

To prove uniform bounds on different norms we use the uniform Gronwall inequality [6,15]: 

Lemma 4.1 (Uniform Gronwall Inequality) Let g ,  h, y be three positive locally inte- 

grable functions for t* I t < +oo which satisfy 

'd t 2t* and dY - - < g y + h  dt  - 

for all t 2 t*, where a1, a2, a3 are positive constants. Then 
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Let us now suppose that f E H and set w = Au in (4.1), 

Here we have used the estimate in (2.10) for trilinear form b(u, u, Au). Using the Young’s 

inequality, we obtain the following differential inequality after dropping the positive term 

u I VA2u12 

We showed earlier that any solution will enter an absorbing ball B,, in H for t 2 tO(BR) .  

Thus 

This result together with the estimate (4.5) allows us to apply the uniform Gronwall 

inequality with y = llu112, g = c;(r;)112~11~ and h = - 2‘f 1 2 .  we get 
E 

where t o ( B ~ )  is given in (4.4). This means that there exists an absorbing ball B,, of 

radius rl in V such that all the solutions will enter this ball after certain time: 

Since B,, is compact in H we conclude that W ( t ,  0; -) maps bounded sets in H into compact 

sets. Note that it follows from (4.7) that for t 2 t o ( B ~ )  + 1, 

Now, let us set w = A2u in (4.1) to get 

Since any solution will be absorbed by balls B,, and B,, after time t 2 t o ( B ~ )  + 1, this 

becomes 
d 12u2 1 2 4  12 
-IAul2 I -IAul2 + -(r:)(r;)  dt E E E 

-IIfI12- 
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Hence, we can apply the uniform Gronwall inequality again to conclude that 

That i s ,  there exists an absorbing ball B,, of radius r2 in D(A)  such that all the solutions 

will enter this ball after time t 2 tO(BR) + 2: 

Note that 

closure of U ~ ( t ,  0; B R )  

is compact in H .  Now, the compactness of the operators W ( t ,  0; -) in H implies that there 

exists a compact attractor A which attracts every bounded sets in H .  In fact, A is the 

global attractor for the operators W ( t ,  0; .) and it is also the w-limit set of absorbing set 

B,,, i.e. A = w(B,,). This means if we denote W ( t ,  0; B,,) = B,,(t) then 

t l t o  ( B R ) + ~  

A = n U B , , ( ~ )  . 
7 2 0  or 1 

Note that the global attractor A must be contained in the absorbing balls in H ,  V and 

D ( A ) :  

A G Br, n Br, n B r z -  

In addition one can show that if W ( t ,  0; -) is injective then in A, W ( t ,  0; a )  will be defined 

for all t E R [19]. Such a result for 2-D conventional Navier-Stokes equations has been 

proven by Ladyzhenskaya [lo]. In the appendix we prove the time analyticity of the map 

W ( t ,  0; .) which implies injectivity. 

Remark: Note that if we assume f E H ,  then from the energy estimate we also get 
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Notice that the above estimate is uniform in e. Let us denote W(t,O; B,;) = B,;(t) and 

note that (4.9) implies that the absorbing ball B,:,(t) will shrink as t increase. That is 

Note that from energy estimate we can also deduce, 

Let us now set w = Alu in (4.1), 

In the above we have used the following estimate for trilinear form b(u, u ,  Alu)  which is 

valid only for n = 2: 

(b(u, u ,  Alu) 5 c ~ ~ u ~ ' / ~ ~ V U I I A ~ U ~ ~ / ~ .  

Using the Young's inequality in (4.10) and then dropping positive terms c I V A ~ U ~ ~  and 

Y ( A ~ U ( ~ ,  we get 

-1VU12 d 5 c;(u(2(Vuy + -. 21f l 2  dt  Y 

By applying the uniform Gronwall inequality again to obtain 

Note that the estimate is again uniform in E. This means that there exists an absorbing 

ball B,; in V* = { u  E H,'(n); divu = 0) such that 

W ( t ,  0; BRt )  c B,;, for t 2 tO(BRt) + 1. 

Let us denote the global attractor A, as w-limit set of absorbing set I?,;. This means if 

we denote W ( t ,  0; I?,;) = B,; ( t )  then 
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Note that since W(t ,O; - )  maps a bounded set in H into compact set in H ,  A, is compact 

in H .  (This is due to the compactness of embedding V *  in H ) .  All the estimates used 

above are uniform in C. Such results will be useful in establishing the limit of A, to the 

attractor A* of the conventional Navier-Stokes equations as E + 0. Special cases of such 

limit solutions were established in [15]. 

4.2 Formulation of Inertial Varieties 

Let us now consider the system (2.1)-(2.4) as an equation of evolution in Hilbert space 

V :  I 2 + CAU + vAlu + B(u,  u) = f, 

u(0)  = UO E v. 
In the sequel, we will assume f E H .  

t > 0, 
(4.11) 

In the previous section we observed that although absorbing balls exists in H , V  and 

D(A)  spaces, the positive invariance property can be established only for the H-ball Bra. 
However, we are interested only in the dynamics in a neighborhood of the attractor. We 

will thus devise a method to restrict our investigation to the dynamics inside the absorbing 

ball Brl. We will use a smooth cut-off funtion 0 : R+ + [0,1] and e,, ( r )  = O(r/rl) such 

that 
e([) = 1, for 0 5  ( 5  1 

1 l O ’ ( t ) l  I 2, for t 2 0, 
to modify the equation (4.11): 

where R(u) = vAlu + B(u,  u) - f. 
(4.12) 

The absorbing property of this modified equation can be shown by taking inner product 

in V ,  i.e. with Au to (4.12). Let us consider the solution starting outside the ball 
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llzlll 2 2rl. Then we obtain the following simple differential inequality since 8,1(l(ul() = 0 

Here we have used the fact that p111u112 < IAuI2 and q111u112 5 IVA2ul2. This leads to 

Notice that if I]u(O)JJ > r3 with r3 _> 2r1, then the solution orbit will converge expo- 

nentially to a ball B,, of radius r3. If Ilu(0)II < r3, then solution orbit will stay inside the 

ball B,, and never leave this ball. That is, there exists an exponentially absorbing and 

invariant ball B,, in V for this modified equation (4.12). In addition, from the definition 

of the cut-off funtion 8 ,  we have 8 r l ( ~ ~ u ( ~ )  = 1 for ( ( ~ 1 1  5 rl (i.e. u E Brl). This means that 

the original equation (4.11) and the modified equation (4.12) are identical in the neigh- 

borhood of the global attractor. Thus the the dynamics of (4.11) are exactly represented 

by system (4.12) after a certain time. 

We shall define the solution operator ug -+ u( t )  associated to  the modified equation 

(4.12) as W,(t ,O;-) .  The operator W,(t,O;-) is defined for all t 2 0 and all uo E H .  

The existence of the absorbing invariant ball B,, c V implies that W,(t,  0; ug) E B,, for 

t 2 T,(uo) for any initial condition ug E V. We will thus construct the inertial variety 

M with a compact support in B,. According to Foias, Sell and Temam [6 ] ,  the formal 

definition of inertial variety is as follows: A set M c V is called an inertial variety of 

(4.12) if 

1. M is a finite dimensional Lipschitz manifold; 

2. M has a compact support and is invariant under the solution operator W,(t,O;.), 

i.e., W,(t,O; M )  M for all t 2 0; 

3. all orbits of the solution of equation (4.12) in V are attracted exponentially to M. 

Remarks: 
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(a) We begin with this formal definition given in [6] and then study the smoothness of 

such manifolds in section 4.5. 

(b) Note that the condition 3 implies that A c M. In fact; if U A  E A,  then since A is 

its own w-limit set, for each t > 0, 3 V A  E A such that U A  = W,(t ,  0; V A ) .  Now 

~ 

where Q is a positive constant. Taking t + 00, we conclude that dist(uA,M) has to be 

zero. Since M n B,, is closed, we conclude that U A  E M. 
Let us now define p = PNU and q = Q N U  for u E V .  By applying the projection PN and 

QN to the equation (4.12) we obtain evolution equations for PNV and QNV respectively. 
I 

Let us construct M as the graph of the Lipschitz function @ : PNV + QNV with @ 

belonging to the class Hb,l defined below. 

Definition 4.1 Let Hb,l be the space of Lipschitz maps 9 from PNV into QNV which 

satisfy 

Note that Hb,l is complete with the metric 

32 



Let @ E Hb,, and po E PNV, then p ( t )  will be determined by the following initial value 

problem: 
dP - + d p  + PNF(P+ @(P)) = 0 dt 

P = P(t) = p(t; @ , P o )  

P ( 0 )  = Po 

(4.15) 

Let us first note that the modified nonlinear term F(u) is globally bounded and Lips- 

chitz. 

Lemma 4.2 For @ E Hb,l and p1,p2 E PNV, we haoe 

where d2 = 2rT'dl + u + 4corl and dl = 2url + 4cor; + I f  I. 

Proof: (i): Note that we have the following estimates for A1 and B(u, w )  

This gives 

where dl is independent of time. 

(ii) We write, 

Using (4.18) and (4.19) we get 

33 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 



(4.21) 

where dl = 2url+ 4cor: + I f ] .  A similar result can be obtained for JJu21) < 2rl 5 11~1)). For 

the last case we have 

From (4.21) and (4.22), we get 

(4.23) 

with d2 = 2r,'dl+ u + 4~071. 
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Let us estimate 

as, 

llUl - u2II I (1 + Wl - P2lL 

Combining this with (4.23) gives 

In consequence of (4.17), we have 

This means PNF is a mapping from PNV into PNH and satisfies global Lipschitz condition. 

From a uniqueness theorem for evolution equations in finite dimensions [2,3], there exists 

at  most one solution p ( t )  = p ( t ;  @, po)  for the Cauchy problem (4.15). 

Let us now integrate (4.14) from ( to t to get 

Notice that (4.16) implies that Q N F ( ~  + @ ( p ) )  is a bounded operator such that Q N F  : 

PNV + Q N H .  Hence, there exists a unique solution q ( t )  q ( t ;  Q , p , )  that stays bounded 

as + -00. This can be seen as follows: from Lemma 3.3 

Also it follows from (4.16) that 
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We now take ( = -m 

(4.25) 

Here S(( )  is the holomorphic semigroup generated by --EA described in section 3.1. Since 

q ( t )  is continuous and bounded for all t E R ,  we choose t = 0 so that po E PNV will be 

related to q(0) G q(0; 9,po) by 

We thus seek the (unique) uniformly bounded solution of (4.11) on (-m,O] with u = 

p + 9(p). We will now define a mapping T : po 4 q(0) as 

where u(r)  = p ( r ;  a, po) + 9 ( p ( r ;  9,~~)). Notice that the condition that u = po + q(0) 

belonging to M is equivalent to the existence of a fixed point for the map T: 

4.3 Inertial Manifold Theorem 
I 

We will establish the existence of inertial manifold using contraction mapping theorem. 

For this purpose we must prove the following: 

Lemma 4.3 For 9 E Hb,l, if p$tl - p Z 2  2 c-ld3 and 1 5 2 then the T maps Hb,l into 

itself: 

T : Hb,l - Hb,l, 

where d3 = 2d2(1+ 1)l- l  and 1 is  the Lipschitz constant for 9. 

Proof: We first note that, 

Lemma 4.4 For 9 E Hb.1, we have 
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f 

Proof: We need to show for llpoll 2 r3 we have T @ ( p o )  = 0 for all @ E Hb,l. Notice that 

u = P N ~  + Q N @ ( P )  since P i  = PN and Q& = Q N .  Now All2; = P ~ A l l ~ p  + QNA1I2@(p)  

since P N , Q N  commute with All2. Thus, l l ~ 1 1 ~  = llp112 + II@(p)112. Hence for IIpJJ > 2rl we 

have llull 2 IIpIl > 2r1. This implies O r l ( ~ ~ u ~ ~ )  = 0 for llpll > 2rl.  

Let us consider the initial point outside the ball B,, such that llp,,ll > r3 2 2rl. We 

can then find a time t such that IIp(t)II > 2r l ,  for T I t 5 0 and hence O r l ( ~ ~ u ~ ~ )  = 0. Thus 

(4.15) becomes, g+.a,=o 
I P ( 0 )  = P o -  

By taking inner product with A p  for above system and using the fact IApI2 2 plllpl12 

we get 

This gives us 

Since llpoll > r3 2 2r1, we have llp(~)II > r3 2 2rl. This means that U ( T )  always stays 

outside the ball B,, for all T < 0. Therefore, Ofl(llu\1) = 0 for all T < 0. This gives us 

F(u) = 0 and thus T@(po)  = 0. 

0 

Let us show that T@ is globally bounded in V .  

Lemma 4.5 If po E PNV, then [T@](po)  E QNV and 

with b = 2dl€-1e-1/2p~+1.  -112 

Proof: From the definition of the map T it is obvious that T @ ( p o )  E QNV and 
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Recalling the estimate for J I Q N S ( - ~ ) I ( L ( Q ~ H ; O ~ V )  from Lemma 3.3 (with a = 1/2) we 

get 

(4.27) 

It follows from (4.27) and (4.16) that 

Let us now prove the global Lipschitz continuity of the map [Tal(.). 

1 then for E HbJ and for  pol,po2 E PNV we have 

(4.30) 

Proof: Let @ be a fixed element in Hb,l. Let p1 = pl(t) and p2 = p2(t) be two different 

solutions of the initial value problem (4.15) with ~ ~ ( 0 )  = P O I ,  ~ 2 ( 0 )  = Po2 res~ec t iveb  

and 

(4.31) 

(4.32) 

I P 2 P )  = Po29 

where u1 = p1 + @(pl) and u2 = pz + @ ( p 2 ) .  By subtracting (4.32) from (4.31), we get 
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I 

where P ( t )  = P&) - P2(t) and P ( 0 )  = Po1 - P02- 

We take inner product of Ap with (4.33) and use estimate (4.17) to get 

which implies 

This leads to 

llpl(7) - ~ 2 ( 7 ) 1 1  I IIpol- ~ 0 2 1 1  ~XP{-PN[N~) ,  tJ7 5 0- 

Now, using the Lipschitz condition on F(u)  given in (4.17), we can estimate 

(4.34) 

where SN = c ( p ~ + 1  - p ~ )  - d2(1+ Z)pfy/'. Note that 
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We thus get, 

with 
-112 QN € N  1' = d2(1+ l)pN+l [E-' + (6 - Q N ( N ) - ' ]  e-lI2 exp -. 

2€ 

0 

Now in order for the transform T to map Ha,l into itse1f;we must have 1' 5 1. An 

elementary calculation shows that sufficient conditions for I' 5 1 are 

I C 

I 
mbining above two results, 

3, with d3 = 2d2(1+ 1)l-l and 1 5 2. lI2 1/2 > €-Id PN+l- / .JN - 

Lemma 4.7 For @ E Hb,l, i f  p$:l 2 c-ld4 and 1 5 2 then  the t rans form T is  a strict 

contraction o n  Ha,,. Here d l  = 2d2(2e-'I2 4- I ) .  

Proof: We will first show that for @ I ,  E Ha,l and po E PNV, 

Consider two elements @I and @ 2  in Hb,l. We take u1 = p1+@1(p1) and u2 = p2+@2(p2) 

with same initial condition po. Then analogous to (4.33) we get 

By taking inner product with A p  and again using the fact IApI2 5 p ~ I J p l l ~  we get 

-IIPII + P N ~ N I I P I I  L -d2pZ2 - a211 I I, = 0, 
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-112 where [ N  = E + d2(1+ l ) p N  > E. This gives us 

d2 -112 
llPl(7) - ~ 2 ( 7 ) 1 1  I T P N  11@1- a211 ~ X P { - P N ~ N T > .  

In addition, we have 

IlUl - u2ll L (1 + 2)IIPl - P2II + 1 1 %  - @211H*,1' 

Thus combining with (4.23) we get 

IF(u1) - F ( U 2 ) I  L d2 [ (1 + 1)llPl - P2II + 1 1 %  - a211 I .  

This gives 

IIT@l(PO) - T@2(Po)ll 5 
0 

d2 Lrn IIQNS(-~)II~(O~H;O~V)[ (1 + l)IIPi(T) - P2(T)II + II@1 - @2II Id7. 

By applying the estimate (4.37) we get 

IIT@l(Po) - TWP0)II 5 
d2 -112 1 + l)e-"ENr]d~. d211Q1 - a211 1 I IQNS(-~)II~(O~H;O~V)[~ + T P N  ( 

0 

--oo 

From (4.27), (4.35) and (4.36), we finally get 

-112 -112 
IIT@l(pO) - T@2(pO)II 5 C - l d 2 (  2e PN+1 + pL1I2 l')ll@l - @211 

= L 1 1 %  - a2119 

where 1' is given in (4.30). 

In order for T to be a strict contraction we must have L < 1. Let us choose 

-112 -112 I 1 
L = d2~-l(  2e-'f2pN+1 + /LN 1 ) L S .  

Since I' 5 1 and p N  112 < - pN+l, 112 a sufficient condition for L 5 1/2 is 

'I2 > c-'d4, with dl = 2d2 ( 2e-'f2 + 1 )  and 1 I 2. PN+1 - 
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Let us now establish the existence of the inertial manifold for (4.12). 

Theorem 4.1 Let @ E Hb,l with 0 < 1 < 1 and b be given in (4.28). Let N *  be given and 

for R = r3 + b, along with 0 < 7 < 1 - 1, there exist constants d3,d4 depending only o n  

1,  rl, Y, f and n such that the following three conditions are satisfied: 

T h e n  the transform T has a fixed point @ E Hb,l. The  manifold M defined by the graph of 

is a n  inertial manifold for (4.12). 

Proof: From Lemma 4.3 and Lemma 4.7, we see that the transform T maps Hb,l into 

itself and is a strict contraction. Thus there exists a unique fixed point @* E Hb.1 such that 

T@* = @* by the contraction mapping theorem. 

We note here that by construction the manifold M is invariant to the action of the 

nonlinear evolution operator W,,,(t, 0; a ) .  To see this we first write the relationship T@* = 

@* as 
0 

@*(PO) = - 1 Q N S ( - ~ ) Q N F ( U ( ~ ;  @*, P O ) ) ~ T ,  (4.39) 
-m 

with ~ ( 7 ,  p0) = ~ ( 7 ;  @*,PO) + @ * ( P ( T ;  @*,PO)). 

Let p ( t )  = p ( t ;  @*, po)  be the solution of (4.15) that is defined for all t E R. Then we 

need to show that g ( t )  = @ * ( p ( t ) )  is a solution of (4.14). Let us consider @ * ( p ( t ) )  and 

using the fact u(7, p ( t ) )  = U ( T ,  W,(t, 0; PO)) = u(7 + t ;  Po) to get 
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By setting T = q - t and from (4.24), (4.25) one has 

@ * ( p ( t ) )  = - I t  Q N S ( ~  - v ) Q ~ J ' ( u ( v , ~ ~ ) ) d v ,  for all t E R- 
-00 

By making use of Leibnitz rule formally, we find that 

This gives 
d@*( t )  

dt  4- E A Q N @ * ( P ( ~ ) )  -k Q N F ( P ( ~ )  4- @ * ( P ( t ) ) )  = 0 

Clearly, we see that ( p ( t ) ,  @ * ( p ( t ) ) )  is a solution of (4.13), (4.14). Hence u(t)  is a solution 

of (4.12) with g ( t )  = @ * ( p ( t ) ) .  This proves the invariance property Wm(t,O; M) G M. 
We shall now establish exponential attractive property of the manifold M. Let us recall 

a theorem on the squeezing property of solution orbits [15]. 

Theorem 4.2 Let W,(t,O;uo) and W,(t,O;uo) be two soluti9n of ( 4 . l Z )  with U O , U O  E 

B R  c V. Then  there exist constants C1, C, depending only o n  R,  T ,  f, 

E ,  u, 7 and fl such that for every 7 > 0 and every t E [0, TI, we have either 
.. 

for  every N 2 1. 

We will now show that this property implies that the manifold M be globally exponen- 

tial attracting. For convenience we choose N *  such that 

This gives 
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and 

for t o  I t I 2to. 

~ Let us denote the distance between any point w in the absorbing ball B,, in V and the 

manifold M by 

dist(w, M) = inf{llw - ull : u E M}. 

Let uo E M so that uo = PNUO + @(PNuo) and that lluo - uo11 = dist(u0, M). Moreover, it 

can be shown that llPNuoll 5 r3 for uo E M. Hence for @ E H ~ , J ,  it follows at once that 

hence we can choose R = r3 + b such that uo,uo E BR. Let us now apply the squeezing 

property stated above. We shall first establish the attracting property in t o  5 T 5 2to 

using either one of conditions (4.41),(4.42). 

Using (4.42), we get 

dist(wn(t, 0; uo), M) 5 IpKn(t, 0; uo) - wn(t ,  0; v0)II 

1 1 
2 

5 --lluo - 0011 = - dist(u0, M). 

Note that uo will always stay on the manifold for to 5 T 5 2to. 

Let us consider a point ~ ( t )  which has evolved from uo E BR.  That is u(t) = 

Then there is a point on the manifold M which can be represented as W,(t,O;uo). 

u* = P N W ~ ( ~ ,  0; uo) + @ ( P N W ~ ( ~ ,  0; uo)). It follows from (4.41) that 
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Since M is invariant to the action of Wm(t, 0; .), we have Q N W ~ ( ~ ,  0; uo) = @ ( P N W ~ ( ~ ,  0; UO)). 

Note that we also have 

From this it follows that 

dist(wn(t, 0; uo), M )  I (7 + 1 )  I [ ~ n r ~ m ( t ,  0; uo) - PNwn(t ,  0; uo) II 

I (7 + wKn(t, 0; uo) - K ( t ,  0; uo) II 
1 1 
2 2 

5 -11~0 - uoll = -dist(uo, M). 

Here note that p~ 5 p ~ + 1  and 7 + 1 5 1. 

From the semigroup property of Wm(t, 0; -), we can deduce that 

Suppose we write t = nr with to I r I 2t0, then 

This means that 

dist(Wm(t, 0; UO), M )  0 exponentially, as t -+ 00. 

4.4 Spectral Growth Rate 

Let us now discuss the spectral gap condition for operatorA. As established in the 

previous sections, a sufficient condition for the existence of inertial manifold is 

for each E > 0. 
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Let us consider the following two eigenvalue problems: 

1 (-A)2$ = ullt 

and 

v.f$=o 

4lan = 0, A4lan = 0 
The eigenvalues UN of (4.44) can be obtained by the minimization problem: 

(4.44) 

(4.45) 

where Similarly, for 

eigenvalues /.LN of (4.45), we minimize the Rayleigh quotient with u restricted to the space 

V. Since V is a subspace of P, by First Monotonicity Principle [22] we can conclude 

= {u E H 2 ( n ) ,  ulan = 0) and M N - ~  = span{&, - - - , $~-1}. 

It can be shown that the growth rate of the eigenvalues UN of (-A)2 for an arbitrary 

smooth bounded domain fl c R" are [4,17] 

N 
B N V  

UN - 16r4 (-)4fn as N --+ 00. 

Here V is the volume of n and B, is the volume of the unit ball in R". Since pN 2 uN, 

we also have 

P N  - c N4f" as N + 00. 

Here pN is eigenvalues of dissipation operator A = P H ( - A ) ~  and n is the space dimension. 

In particular, for space dimension n = 2, we have p~ - c N 2 .  It is easy to see that for 

sufficient large N we get 

112 112 - c1f2. PN+l- P N  

d3 

c1f2 
This indicates that there exists an inertial manifold only for c > - instead of each c > 0. 

Notice that if eigenvalues P N  - as N + 00, then the large spectral gap condition 

46 



in (4.43) is satified for every E > 0. This will be true if A = PH(-A)2+6,  6 > 0. Hence the 

dissipation operator A associated with regularized Navier-Stokes equations in arbitrary 

two dimensional domains, the spectral gap condition is marginal. However the spectral 

gap condition for A is satisfied for the following case. 

Let us consider problem (4.45) with periodic boundary conditions. Using Fourier series 

we get the eigenvalues as 

In particular, for n = 2 we have 

Let US now Set S(kl,kz) = kq + ki, thus p ( k l , k z )  = csfkl ,kz)  with C = 16,/r4/L4. According to 

magnitude of S(kl,kz), we can rewrite S(kl,kz) in a sequence as S1 5 S2 5 . - -  and this will 

establish an ordering of the eigenvalues as p l  5 p2 5 - -, with p N  = c S$. Since S N  is sum 

of two squares, we can apply a number theoretic result by Richards [18]: 

1 
4 

' 1 2  ' I2  - c 1 / 2 ( ~ N + I  - s N )  2 -log SN as N + oo. p N + 1 -  p N  - 

Here we note that when 0 is periodic, A has a zero eigenvalue. Hence, in order for the 

earlier theories to apply we should modify A by A + p, /3 > 0. 

4.5 Regularity of Inertial Varieties 

In this section we will study the regularity properties of inertial manifolds M. We will 

obtain a sufficient condition for the inertial variety to be C'. We will prove in particular 

that once the existence of inertial variety is established then higher dimensional manifolds 

are automatically C'. 

Definition 4.2 Let Hi,l be the subspace of H ~ , J  and satisfy: 

47 



Note that Hi,, is complete [12] with the metric 

In the Lemma 4.2 we established the global boundedness and Lipschitz continuity for 

the modified nonlinear term F(u). We will now show similar properties for the Frbchet 

(4.46) 

V ~ i ,  ~2 E V ;  V h i ,  h 2  E V. ( -- 

Proof: (i) Note that the FrCchet derivative [DR](u) of R(u) is 

[DR](u) h = vAlh + B(u, h) + B(h,  u) for fixed u E V. 

From (4.18) and (4.19), we get 

This gives 

Thus for fixed u E V, 11 [DF](u)IIqv;q I Kl with Kl = v + 4Corl. 

(ii) For any hl, h2 E V,  We have from (4.48), 

7) 

(4.48) 
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0 

In order to prove the existence of finite dimensional C1 variety M using contraction 

mapping theorem, we establish the 

Lemma 4.9 For @ E H ~ J ,  if pN+l - p N  2 C1K7, p ~ + 1 -  p~ 2 C 2 K s  and 1 5 2 then T 

maps H i l  into itself: 

1/2 1/2 

T : ",l - Hl,l, 

where K7 = max(d3, K3, K5) und Ke = KlKI(l+ bl). 

Proof: Let us first show that D(T@)(p , )  is globally bounded in L:(PNV;QNV) with 

respect to po E P N V .  

I Lemma 4.10 If iP E Hi,l and po E PNV,  then [D(TiP)](p,) E L(PNV;QNV). Moreover, 

if & I N  = ~ ( p N + 1  - pN) - K1(1+ b1)pz2 > 0 then we have 

11 (PO)llf(Ph'V;QNV) 5 

I , and exp 2 E  
C"Elx where M I  = K ~ ( I  + b1)p;'l2 [e-' + ( E  - oN&N)-l] 

-1/2 
€1, = E + K1(l + b l ) p N  ' 

Proof: From the definition of T @ ( p o )  in (4.26), we have V h  E PNV 

[D(T@)](Po)h = - /" --oo Q N S ( - ~ ) Q N [ D F ] ( U )  0 (1 -k [ D @ ] ( P ) )  0 [DP](Po)hdr.  

Note that from Lemma 4.5, we have (T@)(po)  E Q N V .  This means (T@)(.) is a nonlinear 

mapping from PNV into QNV. Hence the Frdchet derivative, [ D ( T @ ) ] ( p , )  E L:(PNV; QNV) 

for k e d  po E PNV.  By the definition of [ D ( T @ ) ] ( p , )  given above, such result can be 

shown as follows: Note that p ( t )  E p ( t ;  e, po)  implies p ( - )  : PNV t+ PNV.  Thus Frdchet 

derivative of p ( t )  a t  po is [Dp](po)  E L(PNV; P N V ) .  Now note that @(.) : PNV t+ QNV 

implies [ D @ ] ( p )  E L((PNV; Q N V ) .  We get 

[DPl(po) -k [ D @ , ] ( P )  [DP](Po)  E L ( p N v ; v ) .  
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Since F(.)  maps V into H ,  we obtain [DF](u)  E L ( V ; H ) .  

Q N [ D F ] ( u )  E L(V;  Q N H ) .  Combining all the above results : 

Consequently, we have 

Recalling the properties of the holomorphic semigroup S(--7) described in section 3.1, we 

have Q N S ( - T ) ( - )  : QNH H Q N V .  Hence D[T@](p , )  E L((PNV;QNV).  

Let us now set + = ( I  + [ O @ ] ( p ) )  o [Dp](p,)h E V ,  then we get 

First we need to estimate I Q N [ D F ] ( ~ ) + ~ .  Since + E V ,  we have from (4.46) and the 

estimate II[D@](P) I ~ L ( P N v ; Q N v )  L b l ,  

Let us consider g = [Dp](p,)h E PNV, for h E PNV. Taking the FrCchet derivative 

with respect to po in the following evolution equation 

f p t  + CAP + PNF(u) = 0 

we obtain 
g: +  EA^ + p~[oF](u)tl, = 0 

g(0) = h. 
Taking inner product with Ag for (4.51) to get 

Then, by using the fact that IAgI2 5 pN11g1I2 we obtain 

d 
l l s l l ~ l l g l l  2 - [ w v  + Kl(1 + bl)P321 ll!Jll2. 

This implies 
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Integrating from r to 0 gives 

Consequently, we have 

(4.52) 

(4.53) 

By applying result (4.53) in (4.50) we obtain 

Note that here we have similar estimates as in (4.35), (4.36). i.e. 

Let us now prove the global Lipschitz continuity of map [D(T@)]( . ) .  Note that here 

[ D ( T @ ) ] ( - )  defines an operator valued map PNV HL((PNV; QNV). 
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with 

Proof: Let @ be a fixed element in H l l .  Let pl(t) and p2(t) be two different solutions 

of (4.15) with pl(0) = pol and p2(0) = pO2 respectively. Let us first consider the term 

I [DF](ul)t,bl - [DF](u2)$,I, from (4.47) we have 

where 

53 

(4.55) 

(4.56) 



By applying (4.55), (4.56) and substituting (4.57) into (4.54) we get 

where c1 = K2(l+ Z)(l+ bl) ,  c2 = co(l+ 1)(1+ b1) + K1Z1. From (4.52), note that we also 

have the following estimates: 

Now, we need to estimate Ilgl-g211. Let us consider the following two evolutionary problems 

for gl(t) and g 2 ( t )  respectively: 

(4.58) 

54 



with 

55 



Now in order for the transform T to map H i l  into itself, along with the hypotheses in 

Lemma 4.3 we must also have A.41 5 b1 and 1; 5 11. An elementary calculation as before 

show that a sufficient condition for A.41 5 bl is 

' I 2  ' I 2  > e-lK3, with K3 = 2K1(1  + bl)b;', P N + l -  P N  - (4.62) 

(4.63) 

and for 1; 5 11 is 

with K5 = max(K4, K 1 ( 1 +  bl)  + d 2 ( l  + 1 ) )  
- 

p ~ + 1  - PN 2 E-2K6, with K6 = K1K4(1  + b l ) ,  K4 = 4C31T1. 

Combining above results (4.62), (4.63) with the hypotheses in Lemma 4.3 we get 

' I 2  > ed1K7, with K7 = max(d3, K3, K5) 
P N + 1 -  P N  - 

P N + l -  P N  2 6-2K6- 

In previous section, we have proven that T is a strict contraction map on Hb,l. Since 

H i l  is a closed subspace of Hb,J, this immediately implies that T is also a strict contraction 

on Hl,l .  Together with the Lemmas proved above, we can conclude that there exists a 

unique fixed point @* E Hl,l such that T@* = @* by the contraction mapping theorem. 

Hence we have the following theorem: 

Theorem 4.3 Let @ E Ht,l and with the hypotheses be given in Theorem 4.1. There 

exist constants d4,K6, K7 depending only on l , l l , b l , r l , u ,  f and fl such that the following 

conditions are satisfied: 
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Then the tranform T has a fixed point @ E H:l.  The finite dimensional C' manifold M 

defined b y  the graph of @ is an inertial manifold for (4.12). 

Let us now compare the spectral gap conditions for Theorem 4.1 and Theorem 4.3. 

Notice that for a fixed E > 0 there exist infinitely many choices of N such that the conditions 

in Theorem 4.1 are satisfied. Let us assume now that No is the smallest number for which 

the conditions in Theorem 4.1 are satisfied. Now, for the existence of a C 1  inertial manifold, 

additional conditions (iii) and (iv) in Theorem 4.3 are needed. Note that condition (iv) in 

Theorem 4.3 can be written as 

Since P N + ~  2 pN, we obtain 

For a fixed E > 0 and every N > NO, we have 

> q E i  E 2€  ) .  

Hence, provided that N >No, condition (iii) and (iv) can be combined into one condition. 

1.e. 
112 1 K6 pN+' - pZ2 2 ;Kg with Kg = max{-, K,} .  

2d4 

This means for N > No, a sufficient condition for the existence of a C' inertial manifold is 

Such result implies that the higher dimensional inertial manifolds are automatically C'. 
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Appendix A 

Time Analyticity of Strong Solution 

In this section we will show the time analyticity of the strong solution using a method 

introduced in [21] for the conventional Navier-Stokes equations. Let us first recall an 

existence theorem provided in [15] for the evolutionary equation of (4.11). 

Theorem A . l  Let n 5 6 and uo E V,  f E L"(0,T;H) be given. Then there exists a 

unique solution of problem (4.11)) which satisfies u E L2(0 ,T;  D ( A ) )  n C ( [ O , T ] ; V )  and 

ut E L2(0, T ;  H ) .  

Let us denote C as the complex plane and Hc,Vc ,  D ( A c )  be respectively the com- 

plexification of the spaces H ,  V,  D ( A ) .  

Theorem A.2 Let f be an Hc-holomorphic function on D (a neighborhood of the positive 

I real axis R+) and is bounded from D into H c .  Then, the unique solution u in Theorem 

A S  is an Hc-holomorphic function in a neighborhood of the positive real azis. 

Proof : By considering projection of (4.11) in PNHC we get the complex differential 
I , system 
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The above system is equivalent to a finite system of complex ordinary differential equations. 

Such a system has a unique solution uN(() which is holomorphic in a neighborhood of the 

origin [3, Theorem 8.1, Chapter 11. Let us now obtain an estimate on the size of this 

neighborhood in the (-plane. 

By taking inner product of (A. l )  with A u N ( ( ) ,  we get 

I d  
- - l IuN(seie)  
2 ds 

+ E cos BIAuN(seie) l 2  + v cos BIVA2uN(seie) l 2  
= -Re{ eie ( B  ( u N ( s e i e ) ,  u N ( s e " ) ) ,  AuN(se"))} + Re{ eie (f , AuN( se")) }. (A.3) 

The right hand side of above equation has following estimates: 

The estimate for trilinear term of real case in (2.10) can be extended to the complex case 

This gives us 

Thus equation (A.3) becomes 

d 
- - ( (uN(se ie ) ( (2  + ~ c o s B ( A u ~ ( s e ' ~ ) ( ~  + ~ U C O S ~ ( V A ~ U ~ ( S ~ ~ ~ ) ( ~  
ds 
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We can drop positive terms E cos BIAuN(seie) l2 and v cos 01VA2~N(seie)12 to obtain a dif- 

ferential inequality, 

where cjP = max(cL, 21flm/c) and I f l o o  = Iflp(O,T;HC). Then, by integrating the differential 

inequality (A.4) from 0 to s we get 

with 

0 5 s 5 a(cos6)3, 

and 
3 1 a = -  
8c:(l + llfLo112)2' 

This show that the Galerkin solution uN(<) is uniformly bounded in the region AD(O) 

of the complex plane C. Here, 

Therefore, the domain of holomorphy in time can be extended from the neighborhood of 

the origin to AD(0). Moreover, for any = sei' E Ao(O), we have 

SUP IlfLN(c)ll2 L kl,  kl = k1(lluoll). (A.5) 
f E f b ( O )  

Let us now consider the passage to the limit of the solution UN(<). From the estimate 

(A.5) and the compactness of the embedding Vc C Hc, we conclude that for < E Ao(O), 

{ZL~(~ ) } ;=~  belongs to a compact set in Hc. Hence, by the vector valued version of 

the Vitali Convergence Theorem [7, Theorem 8.2.11, there is a subsequence { U N ~ ( < ) ) ~ ~  of 

{ U ~ ( ~ ) } E = ~  that uniformly converges to Hc-holomorphic function u* (e) on every compact 

subset of AD(0). Notice that the restriction of uN(c) to the positive real axis will concides 
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with the Galerkin solution u N ( t ) .  Hence, it is also true that the restriction of u*(<) to 

the positive real axis concides with the unique solution u(t)  described in Theorem A.l. 

Therefore, u* (<) can be viewed as a holornorphic extension of u(t)  to the region AD(O). This 

implies u*(<) is unique as well in the holornorphic region A,(O). Due to the uniqueness of 

u*(<) on Ao(O), the entire sequence { U N ( < ) } G = ~  should converge to u*(<) in Hc uniformly 

on every compact subset of AD(0). We will thus denote u*(g) = u(<).  

Let us now consider the inequality in (A.4) for 0 < t o  < Q and s > to. Integrating the 

differential inequality from t o  to s we obtain 

IIuN(seie)l12 5 const., with to < s 5 to + a(cos0)’. 

This implies that u ~ ( < )  is holornorphic in the region A D ( t o )  of the complex plane C, and 

Iterating this argument, we can conclude that u(s) is an Hc-holomorphic function in 

the region A of the complex plane C, with 

That is, u(<) is an Hc-holornorphic function in a strip containing the positive real axis. 
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